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Abstract

A Lattice Boltzmann scheme is developed for the simulation of the heat and mass transfer during cooling of
packed cut ¯owers. Using this problem as a case study, we investigate whether the Lattice Boltzmann scheme can be

used as a generic tool in the design process of packages with agricultural products.
The Lattice Boltzmann method has been chosen for its attractive simplicity and its appeal to physical intuition.

The method maps the problem on a regular lattice, populated with lattice gas particles, which move across the
lattice and collide with one another.

Mathematical and numerical analysis have shown that our Lattice Boltzmann scheme is consistent with a
convection±di�usion equation with heat and mass transfer, even up to high grid Peclet and Courant numbers.
Comparison of the simulation results of the LB scheme with experimental data shows that the model applies quite

well to cooling of packed cut ¯owers.
Given the results of this study we conclude that the Lattice Boltzmann scheme is indeed suitable as a generic

framework for the modelling of heat and mass transfer processes in packages of agricultural products. # 1999

Elsevier Science Ltd. All rights reserved.

1. Introduction

Many interrelated physical processes play an import-
ant role in the heat and mass transfer from packages
with agricultural products to the environment, such as

conduction, convection, di�usion, respiration, evapor-
ation, condensation, and convective transfer [1,2].
Controlling the heat and mass transfer is crucial for

maintaining the keeping quality of the packed products
[3]. The barrier properties of packages make them im-
portant instruments for controlling the heat and mass

transfer. Given the complexity of these processes, a

model-based approach of the evaluation of the pack-

aging would greatly enhance the design process.
In large packaging systems, used for road transport

and air freight, the spatial variation in physical quan-
tities, such as temperature and density of various

gasses (water vapour, O2, CO2), can manifest itself in
the quality of the packed product. Consequently, the
model should describe the spatial distribution of the

relevant physical quantities. The mathematical descrip-
tion of these distributions is done with partial di�eren-
tial equations.

Various models have been developed for the descrip-
tion of the heat and mass transfer in packed or stored
agricultural products [2±7]. To our knowledge all these
models are solved numerically by either a Finite

Di�erence method or a Finite Element method.
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In most transport packaging systems the heat and

mass transfer is dominated by a convection±di�usion

process. The numerical solution of this phenomenon is

a complex problem. Thus, in order to obtain a reliable

solution with Finite Element or Finite Di�erence

schemes, advanced mathematical techniques are

required [2,6].

An alternative numerical solution method of the

convection±di�usion problem, requiring little advanced

mathematics, is the recently developed technique of the

Lattice Boltzmann (LB) scheme [8,14]. LB schemes

simulate physical transport phenomena with quasi par-

ticles, populating a regular lattice. The dynamics of

these so-called lattice gas particles are stripped to the

barest essentials: the particles move across the lattice

along links connecting neighbouring lattice sites, and

upon arrival at a lattice site the particles undergo col-

lisions. In order to simulate physical phenomena the

collisions must satisfy appropriate conservation laws

and the lattice must exhibit certain symmetries. Using

simple collision rules, various complex phenomena

have been modelled successfully, such as Navier±

Stokes ¯ow [8,9], convection±di�usion [10], reaction

di�usion [11], and natural convection [12].

The straightforward principles of the LB scheme

give it some attractive properties, relevant to our appli-

cations. These properties are: (1) it is applicable to a

large class of physical and biological phenomena; (2) it

can easily handle complex geometry and boundary

conditions, with simple and strictly local rules; and (3)

its implementation on the computer is relatively

straightforward. Given these properties, the LB scheme

appears to be a suitable choice for the general frame-

work for the model-based approach of the heat and

mass transfer in packaging systems.

In this paper, a LB scheme modelling the heat and

water vapour transfer during the cooling of packed cut

¯owers is presented. These processes can be described

with one-dimensional convection±di�usion equations

with source terms representing the convective heat and

mass transfer between product and air¯ow [13]. We

use this problem as a case study for the investigation

of the capabilities and the practical usefulness of the

LB scheme towards our objectives.

Before treating the full problem of cooling packed

cut ¯owers, a reduced problem is considered, which

involves only heat transfer. The performance of the LB

scheme is analysed both mathematically and numeri-

Nomenclature

Symbols of PDE model
a thermal di�usivity of air [m2/s]
Aspec speci®c transfer area [m2/m3]

c vapour concentration [kg/m3]
cp heat capacity [J/kg K]
D di�usion coe�cient [m2/s]

k wave number [1/m]
L length [m]
r heat of evaporation [J/kg]

s relaxation rate [1/s]
t time [s]
T temperature [K]
u velocity [m/s]

x spatial co-ordinate [m]
a heat transfer coe�cient [W/m2 K]
b mass transfer coe�cient [m/s]

E porosity of ¯owerbed
l heat conductivity [W/m K]
r mass density [kg/m3]

Symbols of LB scheme

ci propagation speeds
D di�usion coe�cient
gi number of lattice gas particles

hi number of heat particles
j particle ¯ux of

K wave number
N number of lattice sites
Pe� grid Peclet number

U Courant number
vi distribution of vapour lattice gas particles
f transfer rate

F transfer operator
m Knudsen number
r density of lattice gas particles

o relaxation rate
O collision operator

Super- and subscripts

a air
eq equilibrium
g generic lattice gas

h heat particles in air
i state index
(n ) nth order perturbation
p product

q stagnant heat particles
sat saturated
v vapour particles

0 ambient condition
1 initial condition
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cally. A one-dimensional convection±di�usion LB
scheme will be derived from an existing 2-D LB

scheme [10], which considers convection±di�usion in
conjunction with Navier±Stokes ¯ow. For the 1-D
convection±di�usion scheme we expect similar per-

formance as the scheme of Flekkoy [10], i.e. the
scheme has good (second order) accuracy and little nu-
merical di�usion even at moderately high grid Peclet

numbers and high Courant numbers.
For the modelling of heat transfer between ¯owers

and air¯ow, the 1-D convection±di�usion scheme is

extended with a source term. The consistency of the
extended scheme is analysed mathematically with the
Chapman±Enskog procedure, a standard tool in kin-
etic theory [16]. Subsequently, the accuracy of the

extended scheme is analysed by solving a problem,
involving heat transfer between ¯ower and air¯ow,
which has an exact solution.

After checking the consistency of the scheme with a
convection±di�usion equation having a heat transfer
source term, the scheme is extended with the water

vapour transfer processes in the packed bed of ¯owers.
With this ®nal scheme simulations of the cooling be-
haviour of packaged cut ¯owers are performed and

compared with data of cooling experiments. From the
comparison between numerical simulation and exper-
iment and from the previous numerical and mathemat-
ical analysis, conclusions are drawn for the usefulness

of the LB scheme as a modelling tool for physical
transport phenomena in packaging systems.

2. Convection±di�usion scheme with heat transfer

The reduced problem, considering only the heat
transfer in ¯ower packages, is mathematically

described by the following set of partial di�erential
equations [13]:

@ tTa � u@xTa � sa�Tp ÿ Ta� � a@ 2xTa, �1�

@ tTp � sp�Ta ÿ Tp�: �2�

Here Ta is the temperature of the air ¯owing with vel-
ocity u and Tp is the temperature of the cut ¯owers.
The time and spatial derivatives are denoted by @t and
@x, respectively. The relaxation constants sa and sp are
determined by the heat resistance of the boundary
layer between the ¯owers and the surrounding air. The

thermal di�usivity of air is a.
Before presenting the LB scheme for the solution of

the reduced problem Eqs. (1) and (2), the general prin-

ciples and the numerical properties of the convection±
di�usion Lattice Boltzmann scheme are brie¯y
described.

2.1. 1-D convection±di�usion scheme

LB schemes essentially describe the evolution of the
particle distribution of a lattice gas, whose density rep-
resents the physical quantities to be modelled, such as

temperature. The particle distribution functions gi(x, t )
denote the number of particles propagating with vel-
ocity ci along the lattice link Dxi=ciDt connecting

nearest neighbours. The particle number density is
obtained after summing gi over all states, i.e.
rg�x, t� � Sigi�x, t�. The particle number density can

be related to macroscopic observable quantities, such
as temperature, concentrations etc. The particle distri-
bution evolves as particles propagate to neighbouring
lattice sites, where they collide with other particles.

Thus, the evolution of gi can be described with a col-
lision step followed by a propagation step:

gi�x, t� 0 � gi�x, t� � og�geq
i �x, t� ÿ gi�x, t��, �3�

gi�x� Dxi, t� Dt� � gi�x, t� 0: �4�

The collisions are modelled as a relaxation towards an
equilibrium distribution geqi , as is common practice in
classical kinetic theory [16]. Combining Eqs. (3) and

(4) one obtains the Lattice Boltzmann equation, which
can be regarded as a discretisation of the classical
Boltzmann equation. og controls the relaxation
towards equilibrium and is related to physical trans-

port coe�cients like di�usivity and viscosity.
For convection±di�usion the equilibrium distri-

bution has the following form [10]:

g
eq
i �x, t� � wirg�x, t�

�
1� ciu

c2s

�
, �5�

with the weight factor wi de®ned by

wi � c2s
2c2i

, �6�

and the `speed of sound' cs de®ned by

c2s �
X
i

1

2c2i
: �7�

For convection±di�usion the parameter cs has no
physical meaning. In LB schemes modelling Navier±
Stokes ¯ow, it does have the meaning of the speed of

sound. The value of the speed of sound of the lattice
gas is dependent on the type of lattice applied (i.e. the
set of allowed particle velocities {ci}).

The expression for the equilibrium distribution for
the convection±di�usion scheme follows naturally from
the constraints:
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X
i

geq
i �x, t� � rg�x, t�, �8�

X
i

cig
eq
i �x, t� � rg�x, t�u: �9�

Having the appropriate equilibrium distribution Eq.

(5), the number density rg(x, t ) will evolve according
to a convection±di�usion equation, as is mathemat-
ically derived by Flekkoy [10]. The di�usion coe�cient

is related to the relaxation parameter og. In the limit
of low Courant numbers (U � uDt=Dx) the di�usion
coe�cient is equal to

D � c2s

�
1

og

ÿ 1

2

�
Dt: �10�

At higher Courant numbers the di�usion coe�cient is

also velocity dependent. In the Appendix the equation
for the velocity dependent di�usion coe�cient is de-
rived.
For the problem, covered in this paper, one-dimen-

sional convection±di�usion is considered. The con-
®guration of the lattice is readily derived from Eqs. (8)
and (9). The 1-D lattice is populated with particles

propagating either to the left or to the right, i.e.
ci �2Dx=Dt, with i= 1, 2. The weight factors are
wi � 1

2 and the speed of sound is cs � Dx=Dt.

2.2. 1-D convection±di�usion scheme with source terms

The consistency and accuracy of the 1-D convec-
tion±di�usion LB scheme extended with a source term,
describing the heat transfer between packed ¯owers
and the air¯ow through the bed, is investigated below.

In this extended LB scheme the amount of heat, in
the air in the packed bed of ¯owers, is modelled by the
lattice gas distribution function hi. The density of this

gas is proportional to the air temperature:
rh � Sihi � Ta. The heat of the ¯owers is modelled by
stagnant particles with density rq, which is pro-

portional to the product temperature: rq=Tp.
The extended LB scheme reads as follows:

hi�x� ciDt, t� Dt� ÿ hi�x, t�

� oh�heq
i �x, t� ÿ hi�x, t�� � Fh

i �x, t�, �11�

rq�x, t� Dt� ÿ rq�x, t� � Fq�x, t�, �12�

with the equilibrium distribution de®ned by Eq. (5)
and the source term de®ned by:

Fh
i �x, t� �

fh

2
�rq�x, t� ÿ rh�x, t��, �13�

Fq�x, t� � fq�rh�x, t� ÿ rq�x, t��: �14�

Since previous LB schemes have not addressed heat

transfer processes, the collision operator Fh
i has to be

constructed using physical arguments. We have postu-
lated, that Fh

i is a weighted function of the transferred
heat, with weights equal to wi � 1

2 . The heat of the

¯owers is modelled with stagnant particles (ci=0),
whose density, rq, evolves according to the ®rst order
discretisation of Eq. (2).

In order to determine the consistency of our LB
scheme with the physical phenomena considered, and
to establish the relationships between the physical par-

ameters and the model parameters, we have performed
the Chapman±Enskog procedure [8]. This is a standard
technique in kinetic theory, where it is used to derive
the macroscopic transport equations from the classical

Boltzmann equation [16]. This technique can equally
well be applied to the Lattice Boltzmann equation
[10,11]. In the Appendix we show by using the

Chapman±Enskog procedure, that the LB scheme
models Eqs. (1) and (2) with second order accuracy.
Furthermore, the following relations between the

model parameters of the LB scheme and the physical
parameters are obtained:

a � c2s

�
1

oh

ÿ 1

2

�
Dt; sa � fh

Dt
; sp �

fq

Dt
: �15�

The accuracy of the LB scheme is studied numerically
by comparing the computational results with an exact

solution, which holds for the problem of a semi-in®nite
packed bed with a periodically varying heat source at
the origin. The temperature of the incoming air¯ow is
giving by

Ta�x � 0, t� � T0 � ~Ta cos�st�: �16�

The exact periodic stationary solution is obtained by
substituting

Ta�x, t� � T0 � ~Ta exp�ÿkx� ist�, �17�

Tp�x, t� � T0 � ~Tp exp�ÿkx� ist�, �18�

into Eqs. (1) and (2). The value of the wave number k

is obtained by solving the following equation:

ÿak2 � uk� sa ÿ is� sasp

sp ÿ is
� 0: �19�

Injecting an appropriate amount of particles at the ori-
gin varies the temperature of the heat source, such that
the following condition is satis®ed:X

i

hi�x � 0, t� � Ta�x � 0, t�: �20�
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Calculations are performed with the grid Peclet num-

ber Pe�=uDx/a = 1 and Pe�=100, for values of the

Courant number U=uDt/Dx in the range of

0.01 R U R 0.1, and for sa=0.3 sÿ1 and sp=0.003 sÿ1,
which are typical values for packed beds of agricultural

products. In our simulations we have set s=sp, such

that large values for the wave number k can be

obtained. From the simulation results the dimension-

less complex wave number K=kDx is computed using

non-linear regression. These values have been com-

pared with the root of Eq. (19), as is shown in Fig. 1.

For the range of Re(K ) > ÿ0.4 we have obtained

accurate results, the di�erences between the estimated

and the exact values of K are within 2% for both

Pe�=1 and Pe�=100. If the ratio of the macroscopic

length scale kÿ1 and the lattice spacing Dx approaches

unity (m 1 K4 1), the LB scheme looses accuracy, es-

pecially in the case of high Peclet numbers. This is not

unexpected considering that the Chapman±Enskog

expansion is valid only in the range of the Knudsen

number m < 1. As such, steep gradients can not be

resolved accurately by the LB scheme. However, this is

a property shared with many other numerical schemes.

3. Cooling of packed cut ¯owers

After checking the consistency of our LB scheme, an

extended scheme for the problem of cooling cut ¯owers

has been developed. Packed cut ¯owers are cooled by

forcing cold air through the vent holes in the package
and subsequently through the bed of ¯owers, as is

shown in Fig. 2. In this case study, the packaging con-

sidered is in the middle of a large stack, with adjacent

packages at all sides. All packages in the stack are ven-

tilated with an equal amount of air¯ow. Consequently,

the cooling process of ¯owers in the box in the middle

of the stack can be treated as a one-dimensional
problem. Further assumptions are:

1. The ¯ower bed is a porous medium with homo-

geneous porosity, resulting in a uniform ¯ow ®eld

through the bed.
2. The heat conduction of the solid phase of the

¯owerbed is negligible, due to limited contact

between the individual ¯owers.

3. The heat production by respiration is negligible.

4. The ¯ower plants maintain a saturated vapour

pressure in their tissue.

Fig. 1. Comparison of the solution of LB scheme (symbols) with the exact solution (lines) of the problem of a semi-in®nite packed

bed with periodically varying heat source at the origin. Shown is the value of the wave vector K of the exact solution as a function

of the Courant number U for the grid Peclet number Pe �=1 and 100.

Fig. 2. Schematic diagram of packaging for cut ¯owers. The ¯owers face either side of the box and are wrapped in foil, indicated

with dashed lines.
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5. The saturated vapour pressure is a function of the
¯ower temperature.

6. There is vapour transfer between product and sur-

rounding air, which is proportional to the vapour
de®cit between the plant tissue and the air.

Applying the above assumptions the heat and vapour

transfer can be described by the following equations
[2,5]:

@ tTa � u@xTa � a@ 2xTa � sa�Tp ÿ Ta�, �21�

@ tTp � sp�Ta ÿ Tp� � sw�ca ÿ csat
a �, �22�

@ tca � u@xca � D@ 2xca � sv�csat
a ÿ ca�: �23�

These equations are obtained by extending Eqs. (1)

and (2) with a convection±di�usion equation governing
the water vapour transport in air. The source term in
Eq. (23) accounts for the evaporation of water from

the cell tissue of the ¯owers. The heat of evaporation
is extracted from the heat of the ¯owers and is
accounted by the extra source term in Eq. (21).

The relaxation constants:

sa � aAspec

racpa
E
, sp � aAspec

rpcpp
�1ÿ E� ,

sw � rbAspec

rpcpp
�1ÿ E� , sv � bAspec

E
,

�24�

are determined by the heat and mass transfer coef-

®cient of the ¯ower plants tissue and the boundary
layer between the ¯ower and the surrounding air ¯ow.
The description of the physical system, Eqs. (21)±

(23), is completed with the initial and boundary con-
ditions at the in ¯ow (x = 0) and out ¯ow (x=L )
boundaries of the bed of product:

Ta � Tp � T1, ca � csat
a �T1�,

for all x > 0, at t � 0;
�25�

Ta � T0, ca � ca0, for all t, at x � 0, �26�

@xTa � @xca � 0, for all t, at x � L: �27�

The modelling of the vapour transfer during cooling
requires that another lattice gas with distribution func-
tion vi is introduced in the LB scheme. The density of

this lattice gas represents the vapour density Sivi=rv.
The particle distribution vi evolves according to a LB
equation similar to Eq. (11). The density of the vapour

particles in the ¯owers is maintained at the saturation
vapour pressure r sat

v and therefore it is not modelled
explicitly. The complete extended LB scheme describ-

ing the cooling of ¯owers is given below:

hi�x� Dx i, t� Dt� ÿ hi�x, t�

� Oh
i �x, t� � Fh

i �x, t�, �28�

vi�x� Dx i, t� Dt� ÿ vi�x, t�

� Ov
i �x, t� � Fv

i �x, t�, �29�

rq�x, t� Dt� ÿ rq�x, t� � Fq�x, t� � Fw�x, t�: �30�

The collision operator,

Ov
i �x, t� � ov�veq

i �x, t� ÿ vi�x, t��, �31�

describes the transport of vapour in the air ¯ow and
the transfer operators

Fv
i �x, t� � wifv�rsat

v �x, t� ÿ rv�x, t��, �32�

Fw�x, t� � fw�rv�x, t� ÿ rsat
v �x, t��, �33�

describe the vapour transport by evaporation from
¯owers to air. For the de®nition of the other operators

we refer to the previous section.
The relations between the parameters in the LB

scheme and the physical parameters are given by:

Fig. 3. Particle ¯ux jh at the boundary of the Wigner±Seitz cell (dashed lines), de®ned as jh�x� � c�h��x� 1
2Dx� ÿ hÿ�xÿ 1

2Dx��. At

the boundary x = 0 the particle ¯ux is de®ned as jh�0� � c�hin ÿ hout�.
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D � c2s

�
1

ov

ÿ 1

2

�
Dt; sv � fv

Dt
; sw � fw

Dt
: �34�

3.1. Initial and boundary conditions

The initial particle distributions are set equal to the
equilibrium distributions corresponding with the initial

temperature rh1=T1 and vapour concentration
rv1=c sata (T1), i.e.

hi�x, t � 0� � h
eq
i �rh0�, �35�

vi�x, t � 0� � v
eq
i �rv0�, �36�

rq�x, t � 0� � rh0: �37�

In LB schemes it is convenient and natural to prescribe
the boundary conditions in terms of the particle ¯uxes,
jh and jv, crossing the boundaries of the lattice cells

[19]. These boundaries are midway between the links
connecting adjacent lattice sites and bound the
Wigner±Seitz cell, which is the primitive lattice cell

with the lattice site in the centre [20], as shown in Fig.
3. The particle ¯ux crossing the boundaries of the lat-
tice cell are equal to the number of particles propagat-

ing to the right minus the number of particles
propagating to the left, multiplied by their propagation
speed j ci j� c � Dx=Dt, i.e.

jh�x, t� �
X
i

cihi

�
x� 1

2
Dx i, t

�
, �38�

jv�x, t� �
X
i

civi

�
x� 1

2
Dxi, t

�
: �39�

Such a de®nition can also be stated for the particle
¯uxes leaving the computational domain. Hence, the
¯uxes at the boundaries of the lattice are proportional

to the number of particles leaving the lattice minus the
number of particles injected into the lattice.
For the determination of the values of the particle

¯uxes leaving the lattice, we split the particle ¯ux into
a equilibrium part and a non-equilibrium part:
jh=j eqh +j neqh . The equilibrium particle ¯ux is due to
the externally applied velocity ®eld: j eqh =rhu. The non-

equilibrium particle ¯ux is due to gradients in the
number density and follows Fouriers law, e.g. Ficks
law. For the computation of the non-equilibrium par-

ticle ¯ux at the inlet we use a ®rst order approximation
of Fouriers law and Ficks law. At the outlet (x=L )
the gradients are zero according to the boundary con-

ditions Eq. (27). Hence, the boundary conditions,
stated as prescription of the particle ¯uxes leaving
the lattice, are given by:

jh�x � 0, t� � a

1

2
Dx

�
rh

�
x � 1

2
Dx, t

�
ÿ rh1

�

� rh1u,

�40�

jv�x � 0, t� � D

1

2
Dx

�
rv

�
x � 1

2
Dx, t

�
ÿ rv1

�

� rv1u,

�41�

jh�x � L, t� � rh

�
x � Lÿ 1

2
Dx, t

�
u, �42�

jv�x � L, t� � rv

�
x � Lÿ 1

2
Dx, t

�
u: �43�

Here, rh1 and rv1 are the densities of heat and water

vapour particles at the inlet, respectively.
As the boundaries of the computation domain co-

incide with the boundaries of the lattice cells, they are
displaced half a lattice spacing from the nearest lattice

site. Therefore, the location of the lattice sites are
labelled as x � � 12 � n�Dx, with 0 R n R N ÿ 1 and
N=L/Dx the number of lattice sites.

3.2. Experiments

Simulation results, obtained by the LB scheme, are
compared with data from cooling experiments per-
formed with irises, cultivar Blue Magic. Irises are

chosen since the ¯owerbed has a high degree
of homogeneity in porosity and mass density. Due to
the homogeneity of the porosity the air¯ow inside the
¯owerbed will be quite uniform.

The irises are packed in a commercially used box,
made from corrugated board and measuring
1.20 � 0.45 � 0.30 m. The thickness of the corrugated

board is 4 mm at the top and bottom, and 8 mm at
the sides. At both ends of the box there are two vent
holes (diameter=6 cm). The ¯ower buds face either

ends of the box, as shown in Fig. 2. The box contains
18 bunches consisting of 50 irises each, having a total
mass 35.5 kg. Each bunch is wrapped in polypropylene
foil, which is impermeable to air¯ow and vapour trans-

port. The foil wrapping is open at both ends of the
bunch. As the bunch stacking in the box is very tight,
we assume that the total ¯ow is going through the

bunches. The length of the ¯owerbed is 1.00 m, leaving
two headspaces of 0.10 m at both ends of the box.
The temperature of the ¯owers is monitored with

copper-constantane thermocouples, which are inserted
either in the back of the ¯ower bud or the end of the
stems. In total 20 thermocouples, more or less uni-
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formly distributed over the front, middle and the back

cross section, are used. The positions of these cross
sections and the positions of the thermocouples within

the cross section are indicated in Fig. 4.

The experiment is performed with cooling conditions

as occur during road transport. Prior to the cooling,
the packed ¯owers are stored for 24 h in a climate

room controlled at 198C, giving the ¯owers a uniform

initial temperature. After this pre-treatment the box

with ¯owers is put in an insulated container. Also, 3
other identical boxes, which are ®lled with synthetic

material (arti®cial lemons, partially ®lled with water),

are placed in the container. The weight and conse-
quently, the heat capacity of the arti®cial lemons are

about equal to that of the ¯owers. The air¯ow resist-

ance of the arti®cial is also comparable to that of the
packed bed of irises. Due to the similarity in thermal

and aerodynamic properties, and the low thermal con-

ductivity of the corrugated board, we assume that

there is no heat ¯ow from one box to another. Hence,
the cooling of the packed irises is assumed to be a 1-D

problem.

Subsequently, the container with the boxes is stored

in another climate room, which is controlled at a tem-
perature of 38C and a relative humidity of 90%. The

temperature and the relative humidity of the air at the

inlet are measured with a Vaisailla temperature and

R.H.-sensor. With a fan system, the cold air from the
room is forced into the container, ¯ows through the

boxes and exists again in the climate room. The con-

tainer and the ¯ow of air are indicated in Fig. 4. At
the outlet the air ¯ow velocity is measured with a hot

wire anemometer. Due to the high turbulence and the

division of the air¯ow over four boxes, the velocity
®eld inside the box with ¯owers can not be obtained

accurately. The fan system is regulated such that air-

¯ow velocity inside the ¯ower box is in the range of 5±

10 cm/s, which is the range of air¯ow inside packages
during road transport.

The readings of the thermocouples and the Vaisalla

sensor are recorded with a data logger, sampling at a

2 min interval. An average reading of the thermo-
couples over the last hour of the pre-treatment shows

that the initial ¯ower temperature is 18.820.38C. The
inaccuracy in the initial ¯ower temperature is mainly
due to the non-uniformity of the temperature distri-

bution. The average reading during cooling shows that

the inlet air temperature is 2.820.18C and a relative

humidity of 9025%.

The accuracy of the readings of the ¯ower tempera-
ture during cooling is determined by averaging the

values measured at the end of the cooling during

which a steady state is obtained. Averaging 20 values
of a single thermocouple shows a standard deviation

of 0.0148C, and after averaging 20 readings from all

thermocouples in the back cross section one obtains
the average value of the ®nal ¯ower temperature of

2.48C with a standard deviation of 0.148C. The low

value of the standard deviation indicated a rather uni-

form temperature distribution in the back cross sec-
tion. Other cross sections show similar standard

deviations, and thereby substantiating the hypothesis

that the cooling of the packed irises in this experiment
is a 1-D phenomenon.

It is worthy of noting that the ®nal ¯ower tempera-

ture, 2.48C, is lower than the inlet air temperature,

2.88C. This e�ect cannot be explained by an inaccuracy
in the measurement of the temperatures. In fact, this

di�erence is caused by the evaporation of water from

the ¯ower plant, which extracts heat from the ¯ower

and hence lowers the ¯ower temperature below the air
temperature [13].

Fig. 4. Experimental setup for monitoring the cooling of packaged ¯owers. On the left the container with four packagings is

drawn. On the right the locations of the thermocouples are indicated.
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3.3. Simulation

With the Lattice Boltzmann scheme the cooling of

packed irises, as recorded in the previously described

experiment, is simulated. The numerical results will be

compared with the averaged ¯ower temperatures in the

three cross sections, which are indicated in Fig. 4.

The simulation with the LB scheme is performed

with a lattice with 20 grid points and Courant number

of U � uDt=Dx � 0:1, and a grid Peclet number

Pe�1 250. With the value of U = 0.1 we have a error

of the di�usion coe�cient which is less than 1%, see

Eq. (53).

The physical properties of the ¯owers are approxi-

mately equal to those of water [1]. The initial ¯ower

temperature and the inlet air temperature and relative

humidity are taken equal to the values measured

during the experiment. Three remaining parameters,

aAspec, bAspec and u, are di�cult to determine, due to

the intricate geometry of the individual ¯owers and the

inaccuracy in the air velocity measurement. Thus, they

are estimated from the experimental data by trial simu-

lations.

We have adjusted the yet undetermined parameters

u, aAspec and bAspec until the sum of squared residuals

is minimised. In Fig. 5 the simulation results, com-

puted with the ®nal parameter set u= 0.067 m/s,

aAspec=443 W/m3 K and bAspec=0.056 sÿ1, can be

seen.

Fig. 5 shows that the simulation results correlate

well with the experimental data. The simulation indeed

shows that in the steady state at the end of cooling,
the average ¯ower temperature (in the middle and

back cross section), Tp=2.48C, is lower than the
incoming air, T0=2.88C. This phenomenon can indeed
be explained by the extra cooling e�ect of the evapor-

ation of water from the ¯owers.

4. Conclusions

For the analysis of the heat and mass transfer in

packaging systems with cut ¯owers, a 1-D convection±
di�usion Lattice Boltzmann scheme has been con-
structed. The consistency and accuracy of this scheme

is checked by performing benchmark problems and by
theoretical analysis.
In the ®rst instance, a convection±di�usion scheme

extended with source terms to represent the heat trans-
fer from packed ¯owers to the air¯ow, is analysed.
With the help of mathematical analysis of the
Chapman±Enskog procedure and of numerical analy-

sis, LB schemes have shown to accurately simulate the
phenomena described with convection±di�usion and
simultaneous heat transfer, e.g. Eqs. (1) and (2).

Accurate agreement with exact solutions is found for
both low and high grid Peclet numbers Pe�, with the
restriction that the gradient should not be too steep.

Since large gradients in temperature or vapour density
in systems of packed agricultural products seldom
occur in practice, the limitation of the LB scheme is
not very restrictive for our applications.

Finally, the extended LB scheme is applied to the
problem of cooling packaged cut ¯owers. Next to heat
¯ow phenomena, the scheme also describes the vapour

¯ow phenomena. The scheme is able to simulate cool-
ing experiments with packed irises with reasonable ac-
curacy. The simulation is performed with high grid

Peclet numbers, i.e. Pe�1 250 and with a small
amount of resources (lattice of 20 grid points).
Based on the results of this study, it is concluded

that the Lattice Boltzmann scheme is suitable as a gen-
eric modelling technique for the simulation of physical
processes in packages of agricultural products. In
future research the scheme will be extended to higher

dimensions and with other physical phenomena, such
as natural convection.

Appendix. Chapman±Enskog procedure

The application of the Chapman±Enskog procedure
to a Lattice Boltzmann equation reveals its macro-
scopic behaviour, as triggered by small departures of

the equilibrium distribution [8].
In the Chapman±Enskog expansion the particle dis-

tribution function hi is expanded as a power series of

Fig. 5. Comparison of experiment (symbols) with simulation

data from the LB scheme (lines). Shown is the change in time

of the average ¯ower temperature in three cross sections of

the ¯ower bed during cooling.
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the Knudsen number m, which is the ratio of the mean
free path and the macroscopic length scale:

m0Dx@xrh=rh. The expansion of hi around its equili-
brium distribution is:

hi � h
eq
i � mh�1�i � m2h�2�i � � � � �44�

It must be noted that the Chapman±Enskog expansion
is made under the assumption that m < 1.

Also space and time derivatives of hi are expanded
as series in powers of m. The Chapman±Enskog pro-
cedure introduces two time scales, a fast time scale, t1,
associated with convective (inertial) processes and a

slow time scale, t2, associated with dissipative pro-
cesses, i.e. heat conduction. By the introduction of the
two time scales into the time derivative and the substi-

tution x 1 � mx=Dx in the spatial derivative the follow-
ing is obtained:

Dx@xhi � m@x 1
hi �45�

Dt@ thi � m@ t1hi � m2@ t2hi �46�

As the heat transfer process, modelled by Fh
i , is also a

dissipative process it can be assumed that it also scales
as m 2: Fh

i �wim2 ~fh�rhÿrq�.
After substitution of the expansions Eqs. (44)±(46)

into the LB scheme, Eqs. (11)±(14), performing a
Taylor expansion of hi�x� D x i, t� Dt�, and collecting
terms of equal order in m, one obtains the following

hierarchy of equations:

ÿohh
�1�
i � �@ t1 � ei@x 1

�heq
i �47�

ÿohh
�2�
i � �@ t1 � ei@x 1

�2heq
i � �@ t1 � ei@x 1

�h�1�i
� @ t2heq

i �48�

Here, ei=ciDt/Dx.
After summing Eq. (47) over all states and using

Sih
�n�
i � 0, one obtains the evolution of the density rh

for short time scales, with U � uDt=Dx the Courant
number:

@ t1rh �U@x 1
rh � 0: �49�

Observe, at short time scales the density evolves
according to the continuity equation, as must be

expected.
Substitution of Eq. (47) in Eq. (48) and summing

over all states, one obtains the contribution of the long

time scale to the evolution of rh:

@ t2rh �
�

1

oh

ÿ 1

2

�
�1ÿU 2�@ 2x 1

rh � ~fh�rq ÿ rh�: �50�

The PDE describing the evolution of rq follows
directly from the expansion of Eq. (14). The complete

set of PDE's, Eqs. (1) and (2), is recovered when the
contributions of both times scales, t1 and t2, are added:

@ trh � u@xrh � Dh@
2
xrh �

fh

Dt
�rq ÿ rh� �51�

@ trq �
fq

Dt
�rh ÿ rq�: �52�

For the di�usion coe�cient, it follows that:

Dh � Dx 2

Dt

�
1

oh

ÿ 1

2

�
�1ÿU 2�: �53�

The velocity dependent term (1ÿU 2) is in agreement
with classical kinetic theory [16]. This term arises in
the regime of compressible ¯ow. The velocity depen-
dence is negligible in the limit of low velocities, which

is the incompressible ¯ow regime where Lattice
Boltzmann schemes normally operate. However,
recently it is shown, that the velocity dependent term

can be eliminated, if rest particles with ci=0 are intro-
duced and if quadratic terms in U are incorporated in
the equilibrium distribution [22].
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